

Model LL-STVL / STV (Low Lead)* Submittal Data

11-STVI SERIES - Specifications

LL-31 VL SENILS - Specifications	<u> </u>	
Connection	Solder, Sweat	
Maximum Working Pressure	300 PSI/20 Bar	(PN 20)
Operating Temperature Range	-22° F to 250° F	(-30° C to 120°C)
	Body, Bonnet	CW724R, CW511L
Matariala Of Construction	Gaskets	EPDM
Materials Of Construction	Seat Seal	EPDM
	Handwheel	Polyamide Plastic

LL-STV SERIES - Specifications				
Connection	N			

Connection	NPT (Fem.)				
Maximum Working Pressure	300 PSI/20 Bar (PN 20)				
Operating Temperature Range	-22° F to 250° F	(-30° C to 120°C)			
Markerials Of Construction	Body, Bonnet	CW724R, CW511L			
	Gaskets	EPDM			
Materials Of Construction	Seat Seal	EPDM			
	Handwheel	Polyamide Plastic			

			LL-S	STVL		
Valv	e Size		Annrov			
Valve Size Dimensions Nominal Inches/MM Dimension					Approx. Weight	Handwheel Turns
in	mm	A - Length	B - Height	C - P/T Offset	lbs./kg	
1/2	DN 15	3.39 / 86	3.74 / 95	1.57 / 40	1.2 / 0.53	10
3/4	DN 20	3.54 / 90	3.74 / 95	1.65 / 42	1.3 / 0.58	10
1	DN 25	4.02 / 102	3.78 / 96	1.73 / 44	1.7 / 0.77	10
1 1/4	DN 32	4.72 / 120	3.78 / 96	1.85 / 47	2.7 / 1.2	10
1 1/2	DN 40	5.2 / 132	4.25 / 108	1.93 / 49	3.3 / 1.5	10
2	DN 50	6.06 / 154	4.37 / 111	2.09 / 53	5.1 / 2.3	10

	LL-STV								
Valv	e Size		Annrov						
	ninal ension		Inches/MI	М	Approx. Weight	Handwheel Turns			
in	mm	A - Length	B - Height	C - P/T Offset	lbs./kg				
1/2	DN 15	3.39 / 86	3.74 / 95	1.57 / 40	1.2 / 0.53	10			
3/4	DN 20	3.54 / 90	3.74 / 95	1.65 / 42	1.3 / 0.58	10			
1	DN 25	4.02 / 102	3.78 / 96	1.73 / 44	1.7 / 0.77	10			
1 1/4	DN 32	4.72 / 120	3.78 / 96	1.85 / 47	2.7 / 1.2	10			
1 1/2	DN 40	5.2 / 132	4.25 / 108	1.93 / 49	3.3 / 1.5	10			
2	DN 50	6.06 / 154	4.37 / 111	2.09 / 53	5.1 / 2.3	10			

Product Features

Accurate and precise flow measurement

"Y" Pattern. Globe style design

Accurate and precise flow balancing

Multi-turn, 360°

handwheel with vernier scale and digital readout

Positive Shut-off Offsetting Pressure/

accessories available

Temperature ports, Self sealing with optional Drain Kits

Built in memory stop Wide variety of

	Valve Selection Guide							
Valv	Valve Size							
Nominal Dimensions		Minimum Flow	Nominal Range of Flow	Maximum Flow				
Inches	m m	GPM/LPM	GPMILPM	GPM/LPM				
1/2	DN 15	0.14 / .52	0.5 - 3.8 / 1.89 - 14.36	12.1 / 45.7				
3/4	DN 20	. 26 / .98	3.8 - 5.5 / 14.36 - 20.8	17.4 / 65.7				
1	DN 25	. 37 / 1.38	5.5 - 9.5 / 20.8 - 36	30 / 113.4				
1 1/4	DN 32	. 60 / 2.28	9.5 - 14 / 36 - 53	44.6 / 169				
1 1/2	DN 40	. 91 / 3.46	14 - 20 / 53 - 76	66.4 / 251				
2	DN 50	1.52 / 5.76	20 - 33 / 76 - 125	107.2 / 406				

The Minimum Flow is calculated from the minimum recommended pressure drop 1 ft. WG (=3.0 kPa)

The Nominal Flow is from the maximum setting of the valve and the minimum recommended pressure drop, 2 ft WG (=6.0 kPa)

The Max Flow is calculated from the maximum setting of the valve and the max pressure drop, 20 ft WG (=60.0 kPa)

Optional features and accessories available for this Macon product are an extra charge, and not included in the standard model price. **Tunstall Corporation** 118 Exchange Street Chicopee, MA 01013

^{*}The wetted surface of this product contacted by consumable water contains less than one quarter of one percent (0.25%) of lead by weight. Certificate of compliance available upon request.

PRESSURE DROP TABLES

CV Values for Valve Series LL-STVL/STV

MACON BALANCING
*

Series LL-STVL/STV 1/2"-2"

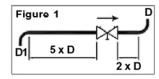
This diagram details the relationship between flow, pressure drop and valve preset points. Use the diagram to select the correct valve size and corresponding handwheel setting to fulfill the application requirements.

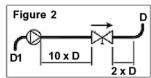
Determine the required flow in the circuit (A) and the pressure drop (B). Draw a line between these two values. Read off the corresponding Cv value on the Cv scale (C).

Determine the valve setting, in handwheel turns, by drawing a horizontal line (D) from the intersection point on the Cv scale to the corresponding valve setting position.

For the highest level of accuracy, it is recommended to choose a valve that has at least 3 open turns.

Example: a 1" valve is required to be open 8 turns for a Cv value of 7.5 at a flow rate of 10 gpm and a pressure drop of 4 ft.


	_100		Settin	g, numb	er of turn	s		-1
2.5 = 40	100							E
35	70							F
2,0 30	70 —							0.5
丰	-50							E
主	50 ——40							+
=20	40						7 10	0 = 2
+20	30						9 8	+
1,0 丰	25 ቜ						1 ,	Æ
<u>-</u> -] 10	100	1 -3
+	20 = 15					3 8	- 6	重
1	15				7 10		1	- ₹4
A 10	=				- 9	7	- 5	丰"
7	10 = 10			7 10	8	- 6		.≢₅
0,5	7 C			D 10	7	100	4	- = -
=	7			8	- 6	- 5		2 6
0,4	5		_ 10	- 7			- 3	-7
1	5 —		7	1	5	4		-
0,3 = 5	4] 10	- 8	- 6	+		- 2	
∄.	-3	9	7			3	_	-10
₹*	32,5	- 8		- 5	1	1		→ B
0,2	2.5		- 6	٦,		- 2	J 1	₹.
±3	2 =	7			- 3			5
=	1.5	1.	- 5	4	- 2			E
丰	1.5	- 6	4		.0.75	_ 1		-20
-2	-1	1.	1000	- 3				E
+	1.0	- 5	- 3	- 2	J 1			25
0.1 +	0.7	4	- 2					10-30
t	0.5	- 1	7 2					- E
7	0.5	- 3		J 1				1
1.	0.4		- 3					140
-["	0.4	- 2	J 1					≢50
0,05	0.3 = 0.25							-50
	0.25							20-60
0.04	0.2	_ 1						-70
Г	= 0.15							+
0.03	0.15							30
	- 0.1							-100
	0.1							40
	- 0.07							-
0.02	-							50±150
	- 0.05							50 50
l/s GPM	Cv Kv	1/2"	3/4"	1"	1 14"	1 1/2"	2"	ft. kP


Flow coefficient values (CVs) at various handwheel settings									
Handwheel	1/2"	3/4"	1"	1 1/4"	1 1/2"	2"			
Setting	DN 15	DN 20	DN 25	DN 32	DN 40	DN 50			
1	0.21	0.39	0.56	0.92	1.39	2.32			
1.5	0.29	0.56	0.75	1.28	1.97	3.25			
2	0.37	0.7	0.89	1.53	2.38	4.18			
2.5	0.44	0.82	1.04	1.8	2.78	5.1			
3	0.52	0.96	1.19	2.09	3.25	6.03			
3.2	0.56	1.02	1.28	2.26	3.48	6.5			
3.4	0.59	1.09	1.39	2.44	3.71	6.96			
3.6	0.63	1.16	1.51	2.67	4.06	7.54			
3.8	0.67	1.23	1.62	2.9	4.41	8.12			
4	0.72	1.31	1.74	3.13	4.76	8.82			
4.2	0.77	1.39	1.91	3.42	5.1	9.74			
4.4	0.81	1.48	2.09	3.71	5.57	10.7			
4.6	0.87	1.58	2.26	4.06	6.03	11.7			
4.8	0.93	1.68	2.44	4.41	6.61	12.8			
5	1	1.8	2.67	4.76	7.19	13.8			
5.2	1.07	1.91	2.9	5.16	7.77	15			
5.4	1.14	2.03	3.19	5.57	8.35	16			
5.6	1.21	2.16	3.48	5.97	8.93	17.2			
5.8	1.28	2.3	3.83	6.38	9.63	18.3			
6	1.36	2.44	4.18	6.84	10.3	19.4			
6.2	1.44	2.6	4.47	7.25	11	20.4			
6.4	1.52	2.76	4.76	7.66	11.8	21.5			
6.6	1.62	2.96	5.1	8.12	12.5	22.5			
6.8	1.74	3.16	5.54	8.58	13.2	23.5			
7	1.88	3.36	5.8	9.05	13.9	24.6			
7.2	2.06	3.6	6.15	9.51	14.6	25.5			
7.4	2.26	3.83	6.5	9.98	15.3	26.4			
7.6	2.49	4.06	6.84	10.4	15.9	27.4			
7.8	2.73	4.27	7.19	10.8	16.5	28.2			
8	2.96	4.47	7.54	11.3	17.1	29			
8.2	3.13	4.63	7.89	11.7	17.6	29.9			
8.4	3.29	4.78	8.24	12.2	18.2	30.7			
8.6	3.42	4.93	8.58	12.6	18.8	31.6			
8.8	3.54	5.08	8.87	13	19.4	32.4			
9	3.65	5.22	9.16	13.3	19.8	33.2			
9.2	3.77	5.36	9.4	13.7	20.3	33.9			
9.4	3.87	5.5	9.63	14.2	20.9	34.6			
9.6	3.98	5.64	9.86	14.5	21.5	35.3			
9.8	4.06	5.78	10	14.8	22	36			
10	4.12*	5.92*	10.2*	15.2*	22.6*	36.5*			
* Valve is fully open									

Valve is fully open

Installation Recommendations

Install the valve in the correct flow direction according to the arrow on the valve body and the distance parameters detailed in Figure 1 (Note: D = pipe diameter).

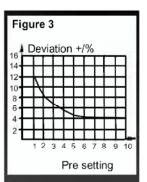
For Series STVL, cover the valve body with a wet cloth when soldering to prevent premature deterioration of valve components.

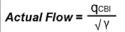
When used with a pump, it is recommended to use a straight length of pipe totaling 10 x D (instead of 5 x D) upstream or downstream to avoid turbulence that will affect the measuring accuracy. See Figure 2.

Turbulence can influence the measurements by up to 20% if this recommendation is not followed.

Flow Measurement & Accuracy

The measuring instrument connects to the test ports of the valve and is pre-programmed with Macon Balancing characteristics. The pressure drop and flow readings can be read off the display. If access to a Macon Balancing instrument is unavailable, other industry standard models are compatible. In addition, the flow can be determined using the pressure drop diagram that is included in the operating instructions with each Macon Balancing valve.


The accuracy is highest when the valve is fully open. Therefore, it is recommended to choose a valve that can be opened at least three turns at the calculated pre-setting value. Figure 3 represents the flow measurement deviation in relation to handwheel turns.


Correction For Liquids

Applies to liquids other than water. Correct the measured flow (q) by the density (Y) according to this formula.

Sizing a Balancing Valve

When the differential pressure and design flow are known, use this formula to calculate Cv value.

$$C_v = 1.52 \frac{q}{\sqrt{\Delta p}}$$

$$C_v = \frac{q}{\sqrt{\Delta p}}$$

q in GPM, √ p in PSI

